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ABSTRACT
Objective To examine the feasibility of using statistical
text classification to automatically identify health
information technology (HIT) incidents in the USA Food
and Drug Administration (FDA) Manufacturer and User
Facility Device Experience (MAUDE) database.
Design We used a subset of 570 272 incidents
including 1534 HIT incidents reported to MAUDE
between 1 January 2008 and 1 July 2010. Text
classifiers using regularized logistic regression were
evaluated with both ‘balanced’ (50% HIT) and
‘stratified’ (0.297% HIT) datasets for training, validation,
and testing. Dataset preparation, feature extraction,
feature selection, cross-validation, classification,
performance evaluation, and error analysis were
performed iteratively to further improve the classifiers.
Feature-selection techniques such as removing short
words and stop words, stemming, lemmatization, and
principal component analysis were examined.
Measurements κ statistic, F1 score, precision and
recall.
Results Classification performance was similar on both
the stratified (0.954 F1 score) and balanced (0.995 F1
score) datasets. Stemming was the most effective
technique, reducing the feature set size to 79% while
maintaining comparable performance. Training with
balanced datasets improved recall (0.989) but reduced
precision (0.165).
Conclusions Statistical text classification appears to be
a feasible method for identifying HIT reports within large
databases of incidents. Automated identification should
enable more HIT problems to be detected, analyzed, and
addressed in a timely manner. Semi-supervised learning
may be necessary when applying machine learning to
big data analysis of patient safety incidents and requires
further investigation.

INTRODUCTION
Information technology has many benefits for
improving the quality and safety of healthcare.
However, there are also inherent risks to patient
safety when health information technology (HIT) is
poorly designed, implemented, and maintained.1–5

For example, serious incidents have occurred when
incorrect medication dosage and treatment have
been prescribed as the result of software errors.6

One of the main reasons for these incidents is that
designing and maintaining safe HIT systems is both
complex and difficult.7 8 Moreover problems with
HIT may only emerge after systems are deployed in
real-world settings.6 Therefore, it is important that
incidents with the potential to harm patients be
reported, so that risks can be understood and
addressed in a timely fashion.

HIT reported amongst medical device incidents
An important source of HIT incidents is the USA
Food and Drug Administration (FDA)
Manufacturer and User Facility Device Experience
(MAUDE) database. The MAUDE database con-
tains reports of events involving medical devices.9

As part of FDA regulatory requirements, manufac-
turers in the USA are required to report medical
device malfunction and problems that lead to
serious injury and death. At present, there is con-
siderable debate about the FDA’s role in regulating
HIT.10 Under the Federal, Food, Drug, and
Cosmetic Act, HIT is a medical device.1 However,
the FDA does not currently enforce its regulatory
requirements with respect to HIT. Nevertheless,
some manufacturers have voluntarily listed their
systems, and in our previous work we analyzed
HIT incidents reported to the FDA.11 The new
Patient Safety Action and Surveillance Plan from
the Office of the National Coordinator proposes to
monitor HIT adverse event reports in MAUDE to
identify HIT patient safety risks.12

Identifying HIT incidents
A major obstacle in addressing HIT risks is the diffi-
culty in identifying the small numbers of reports
about HIT within large databases of incidents. The
MAUDE database currently contains over two
million incidents reported since 1991, with
358 229 incidents reported in 2011 alone. Manual
review of such a large database on an ongoing basis
is not feasible. Another approach is to perform
keyword searches and eliminate non-HIT incidents
through manual reviews of smaller subsets of
reports.11 On the basis of this approach, we previ-
ously searched almost 900 000 MAUDE reports to
identify over 400 relating to HIT. A similar
approach was used to identify 99 HIT reports from
42 616 patient safety incidents in an Australian
incident-monitoring database.13 However, this
method is both time consuming and not exhaustive
unless all HIT-relevant keywords are known in
advance.
In the present study, we set out to evaluate the

feasibility of using statistical text classification to
automatically identify HIT-related incidents within
MAUDE. HITwas broadly defined to include com-
puter hardware and software used by health profes-
sionals to support patient care. To the best of our
knowledge, the present study, focusing on automat-
ically identifying HIT incidents within MAUDE, is
novel. We have previously demonstrated the feasi-
bility of using text classification to identify incident
reports relating to clinical handover, patient identi-
fication, and extreme risk events.14 15 Other studies
have applied text mining methods to electronic

980 Chai KEK, et al. J Am Med Inform Assoc 2013;20:980–985. doi:10.1136/amiajnl-2012-001409

Research and applications

 group.bmj.com on August 11, 2013 - Published by jamia.bmj.comDownloaded from 

http://dx.doi.org/10.1136/amiajnl-2012-001409
http://dx.doi.org/10.1136/amiajnl-2012-001409
http://dx.doi.org/10.1136/amiajnl-2012-001409
http://jamia.bmj.com/
http://group.bmj.com/


patient records,16 radiology reports,17 18 pathology reports,19

and clinical notes,20 but not incident reports. The identification
of HIT incidents within MAUDE may be more challenging than
for other types of incidents (eg, patient identification and clin-
ical handover) because the specific terms used for HIT incidents
may be quite similar to the language used to describe incidents
involving medical devices. For example, problems involving
software embedded in medical devices are not considered HIT
incidents, but might be described using HIT-related words such
as ‘programming’ or ‘systems’.

BACKGROUND
Training text classifiers on imbalanced datasets
The class imbalance between HIT and non-HIT incidents in the
MAUDE database presents a challenge for developing accurate
text classifiers. A dataset is said to be ‘imbalanced’ when the
number of examples from each class are not equal. Training stat-
istical text classifiers on imbalanced datasets, particularly those
with rare classes, can negatively affect their performance.21 22

Our previous study performed text classification on balanced
datasets of patient safety incidents with promising results.14 15

However, these experimental results did not explore perform-
ance on imbalanced (‘stratified’) datasets, which represent real-
world conditions. Therefore, in the present study, we focus on
the more difficult problem of building and validating classifiers
with a stratified subset of MAUDE.

Identifying rare classes
HIT incidents are considered rare classes because they amount
to <1% of incidents in MAUDE. Seiffert and colleagues21

showed that data-sampling approaches can increase classification
performance when rare classes comprise 0.1–1.6% of a dataset.
Other suitable approaches include oversampling, undersam-
pling, cost-sensitive learning, ensemble methods, and construct-
ing k neural networks.21 22 In the present study, we experiment
with an undersampling approach by training classifiers on a
dataset containing a balanced number of HIT and non-HIT inci-
dents and then evaluating performance on stratified validation
and test datasets. This approach allows us to evaluate the feasi-
bility of our previous work14 15 where only balanced datasets
were used to train and test classifiers.

Thus the aims of this study were to examine the feasibility of
using statistical text classification to identify HIT incidents. We
specifically sought to evaluate the performance of classifiers
with combinations of balanced and stratified (real-world distri-
bution) datasets for training, validation, and testing. In addition,
feature-selection techniques such as removing short words and
stop words in addition to stemming, lemmatization, and princi-
pal component analysis were evaluated.

METHODS
Dataset
Our study used 570 272 incidents extracted from the MAUDE
database between 1 January 2008 and 1 July 2010. After data
cleansing and preparation, the experimental dataset was reduced
to 515 897 incidents (see online supplementary appendix A).
The study dataset included a subset of 405 HIT incidents
(0.079%; box 1) that had been labeled in our previous
study.11 13

Experimental setup
We performed a set of ‘preliminary experiments’ followed by a
set of ‘relabeled data experiments’. Preliminary experiments
were performed using the 405 known HIT incidents taken from

our previous study.11 In these early experiments, we determined
that incidents involving handheld devices were causing the clas-
sifiers to mislabel events. These handheld device events within
MAUDE had not been detected in our earlier study, and so we
elected to enlarge the HIT incident dataset by including search
terms for handheld devices. Two annotators labeled these new
incidents that were retrieved from MAUDE using our HIT clas-
sification scheme.11 The annotators achieved a high level of con-
sensus, agreeing on 1145 incidents and disagreeing on 66
(which were then resolved by discussions). However, we
achieved only a moderate inter-rater agreement of 0.579 (κ stat-
istic). This was due to the sensitivity of the κ statistic to class
imbalance,23 as there were 1129 HIT and 82 non-HIT examples
in the labeling set. After expanding the MAUDE search and
annotating the new candidate incidents, we added an additional
1129 HIT incidents to the dataset. In our relabeled data experi-
ments, the preliminary experiments were repeated on the
relabeled data, now containing 1534 HIT incidents (original
405 +1129; 0.297%).

The experiments involved building text classifiers using differ-
ent combinations of balanced and stratified datasets (table 1).
Firstly, datasets with an equal number of HIT and non-HIT inci-
dents were used to generate benchmark results. Secondly, classi-
fiers were built using stratified datasets with HIT populations of
0.297%. Thirdly, classifiers were built using a balanced training
dataset in an attempt to improve the performance of identifying
rare HIT incidents within stratified validation and test datasets.
Experiments with stratified datasets were initially performed
with 10% of the dataset to test the classifiers and then scaled up
to 100%. Details of how the datasets were partitioned are pro-
vided in online supplementary appendix B.

Experimental workflow
Each experiment comprised seven main tasks (figure 1): dataset
preparation, feature extraction, feature selection, cross-
validation, classification, performance evaluation, and error
analysis.

Table 1 Experimental setup

Validation and test dataset

Balanced Stratified

Training dataset
Balanced 1. Benchmark 3. Rare class
Stratified 2. Original dataset

Box 1 Health information technology incident example

It was reported that, while viewing an examination on a PACS
(Picture Archiving and Communications System) workstation, the
site reported that, in 20 examples throughout the year, the CT
exam reports are being assigned to incorrect exams. The report
info (information) may belong to other pts (patients) info
leading to a misdiagnosis. This event is not isolated to a single
workstation, radiologist or particular event. It does not occur all
the time and is not immediately obvious to the caregiver.
However, the event did not cause any harm or potential injury
to a pt (patient) during this instance.
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Feature extraction
A bag-of-words model was used to represent incidents, treating
them as an unordered collection of words, and each unique word
was used as a feature. We performed data preprocessing before
extracting words from the dataset such as removing punctuation
and non-alphanumerical characters as well as converting numbers
into the token, ‘number’. In addition, an unknown-word feature
was incorporated into the feature set to capture the incidence of
new words not found in the training dataset vocabulary.

Feature selection
Common feature-selection tasks such as removing short words
with fewer than two characters, removing stop words, stem-
ming, lemmatization, and principal component analysis24 were
used in our experiments. The goal of feature selection is to
reduce the number of features in the model while maintaining
low classification error. We used feature selection to reduce
memory usage and processing time rather than improve per-
formance because regularized logistic regression (LR) allows the
use of the full feature set while avoiding model overfit.25

Cross-validation
A 10-fold repeated random sub-sampling cross-validation
method was used to assign incidents to training (60%), valid-
ation (20%), and test (20%) sets.26 This random assignment
was performed 10 times to generate 10 different training, valid-
ation, and test datasets. Therefore, 10 different classifiers were
built for each dataset, and their results were averaged to
measure overall performance.

Classification
We used LR over Naïve Bayes and Support Vector Machines
(SVMs) used in our previous work for a number of reasons.14 15

First, discriminant classifiers (eg, LR, SVMs) have been shown
to generally outperform generative classifiers (eg, Naïve Bayes)
on large datasets.27 Therefore, we favor discriminative classi-
fiers, as MAUDE contains millions of incidents. Second, LR has
been shown to be more accurate and faster than SVMs on large
datasets in certain studies.28 29 In particular, we used the conju-
gate gradient descent algorithm with LR to reduce the classifier
training time over large datasets.30 Third, kernel functions were
used by SVMs to transform the training data (input space) into
a feature space for constructing decision boundaries.26

However, these kernels increase memory and processing costs
for datasets where the number of training examples, m, is larger

than the number of features, n, as with MAUDE —that is, LR
can be trained using a m×n matrix, whereas SVMs require a
larger m×m matrix to represent the feature space. Furthermore,
the feature space matrix cannot be represented efficiently as a
sparse matrix as with the input space for LR.

Regularization was used to avoid overfitting (see online supple-
mentary appendix C). Regularization is used when training a clas-
sifier on a small number of examples or learning from a large
number of features.25 Overfitting occurs when a classifier is
tuned too finely to training data and then performs poorly on
unseen test data. Text classification tasks performed on large
datasets often involve training classifiers with thousands to hun-
dreds of thousands of features. For example, the dataset used in
our experiments contains up to 85 560 features. The features
were extracted from the training set, and incidents were then
encoded with this feature set. The classifier then learns incidents
in the training set and is tuned on the validation set to find the
best regularization parameter, λ, by maximizing the F1 score
using a grid search algorithm.31 The classifier was retrained with
the selected λ and used to classify incidents in the unseen test set.

Performance evaluation
Precision, recall, and F1 score metrics were used to evaluate the
performance of the classifiers (see online supplementary appen-
dix D). Precision measures the percentage of incidents predicted
as HIT that are actually HIT. Recall calculates the percentage of
HIT incidents that were successfully identified out of all HIT
incidents in the dataset. The F1 score is the harmonic mean of
precision and recall and measures performance on imbalanced
datasets more effectively than alternative metrics such as classifi-
cation accuracy and the receiver operating characteristic.32

Error analysis
Error analysis involves analyzing incidents that were incorrectly
classified to gain insights for improving the classifier. Learning
curves were constructed on the basis of classification error with
the training and validation datasets. These curves allowed us to
identify bias and variances that can be addressed to improve per-
formance. In addition, the learning curves allowed us to gage
the number of incidents required to sufficiently train the classi-
fier to achieve low classification error.

RESULTS
The results of the experiment are shown in table 2. The classi-
fier built and tested with 100% of the original stratified dataset

Figure 1 Experimental workflow.
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achieved an F1 score of 0.954 along with high precision (0.953
and 0.954) and recall (0.919 and 0.943). The performance of
classifiers using balanced training sets performed poorly (0.274
and 0.283 F1 scores) compared with those using stratified train-
ing, validation, and test sets. Feature-selection techniques were
able to achieve comparable performance when evaluating all
features. This experiment was initially performed on the ori-
ginal 405 HIT incidents (see online supplementary appendix E),
and improved performance was achieved in these experiments
with relabeled HIT data.

The best performing classifier built and tested with 100% of
the original stratified dataset achieved an F1 score of 0.972 with
a selected λ value of 0.3 (figure 2). The classifier is trained in
increments of 5000 randomly selected training examples, and
the overall average training error is 0.02%.

Tokens for identifying HIT events
We identified the most important tokens for classifying HIT
incidents by ranking their coefficients as shown in table 3.
Intuitively, tokens such as ‘handhelds’, ‘cport’, and ‘software/
firmware’ appear useful for identifying HIT incidents, while
‘ceroplasm’ and ‘laboratory/diagnostic’ may be useful for distin-
guishing non-HIT incidents. Tokens such as ‘ra(number)q’ are
created during data preprocessing, and capture words such as
‘ra1028q’ are used in MAUDE incident reports.

DISCUSSION
Analyses of patient safety incidents involving HIT allow emer-
ging problems to be identified and addressed in a timely
manner. However, current methods for identifying these inci-
dents are time consuming or non-exhaustive in discovering all
HIT incidents. We evaluated text classification methods and
showed that the approach is feasible for automatically identify-
ing HIT incidents from large collections such as the FDA’s
MAUDE dataset. Classifiers based on a stratified training set
achieved an average F1 score of 0.953 in identifying HIT inci-
dents within a representative test dataset.

Semi-supervised learning
An important finding of this study is that semi-supervised learn-
ing may be necessary to apply machine learning techniques to
big data analysis of patient safety incidents. The iterative work-
flow of classifying, analyzing, and retraining used in this study
resembles a manual implementation of a semi-supervised learn-
ing approach. More specifically, a small number of labeled inci-
dents (405 HIT) from MAUDE were initially used for training.
We discovered that our classifiers identified many non-HIT inci-
dents as HIT with a high probability, as many non-HIT had
been incorrectly labeled. We retrained the classifiers on relabeled
data and improved performance over our initial experiments.
Semi-supervised learning can be used to perform these steps in
an automated fashion. For example, incidents classified as HIT
above a probability threshold (eg, 95%) can be automatically
relabeled as HIT to retrain the classifier without human annota-
tion. The improvements gained by performing this method
manually provide evidence that the approach is suitable for
MAUDE. In addition, the classifier learning curve in figure 2

Figure 2 Learning curve of the best classifier on the full dataset.

Table 3 Top classification tokens

Token Coefficient

handhelds 9.56
pacsic 3.49
cport 2.32
software/firmware 2.30
ra(number)q 2.18
ceroplasm 2.16
imagesanti 2.05

centrifued 2.01
millennium 1.89
laboratory/diagnostic 1.79

Table 2 Experiment results

Datasets Features* F1 score Precision Recall

1. Benchmark (balanced† training, validation, and test)
3068 incidents 8020 0.994 0.998 0.990
Stop words 99% 0.995** 0.998 0.991
<2 characters 97% 0.994 0.998 0.990
Lemmatize 94% 0.993 0.996 0.989
Stem 73% 0.991 0.959 0.987
PCA 15% 0.995 0.998 0.992

2. Original dataset (stratified‡ training, validation, and test)
10% 31011 0.945 0.977 0.916
Stop words 99% 0.946 0.977 0.919
<2 characters 98% 0.943 0.974 0.916
Lemmatize 94% 0.951 0.987 0.919
Stem 75% 0.953 0.990 0.919

100% 85560 0.953 0.966 0.941
Stop words 99% 0.954 0.966 0.943
<2 characters 99% 0.954 0.967 0.942
Lemmatize 95% 0.952 0.966 0.939
Stem 79% 0.945 0.959 0.932

3. Rare classes (balanced training, stratified validation, and test)
10% 2606 0.274 0.165 0.929
100% 7957 0.283 0.165 0.989

*The number of features from the best performing classifier is shown; percentages
represent the reduced feature set size.
**Bold figures represent the best performing classifiers based on F1-score for each
dataset e.g. the classifier using stop words and PCA for the 1. Benchmark dataset
achieved the top F1-scores of 0.995.
†Balanced dataset=50% health information technology (HIT) and 50% non-HIT.
‡Stratified dataset=0.297% HIT and 99.703% non-HIT.
PCA, principal component analysis.
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indicates that classification error may continue to decline if
trained on more labeled incidents. Recent studies have used
semi-supervised learning in text classification of medical data
including patient discharge summaries and clinical reports.20

Classification performance
The high performance of our classifiers was achieved largely
from conducting error analysis on the preliminary experiment
results (0.953 F1 score; see online supplementary appendix E).
More specifically, we rectified a number of mislabeled incidents
for the relabeled data experiments that improved performance
on 100% of the original stratified dataset from 0.759 to 0.954.
Overall the performance of classifiers built and tested with 10%
and 100% of the original stratified dataset (0.953 and 0.954 F1
score) was comparable to those built and tested with balanced
datasets (0.995 F1 score). In addition, classifiers trained on
stratified datasets outperformed those trained on balanced data-
sets in identifying HIT incidents within a representative test
dataset. This poor performance can be attributed to the low pre-
cision of classifiers when trained on balanced data (0.165).

Compared with our previous studies in building and testing
classifiers with a balanced dataset, we found that classifiers for
HIT incidents performed better (0.995 F1 score) than our previ-
ous studies that used a similar approach for classifying up to
600 clinical handover incidents (0.84–0.92 F1 score) and up to
500 patient identification incidents (0.91–0.98 F1 score).14

More advanced text classification methods such as n-grams
where n>1, part-of-speech tagging, semantic role labeling, and
relationship extraction can be investigated to further improve
performance. However, the simple unigram features achieved an
F1 score of 0.953, and advanced techniques may increase com-
putational complexity for minor performance gains.

Feature selection
The use of feature-selection techniques did not significantly
reduce the feature set size with the exception of stemming
(73–79%) and principal component analysis (15%). However,
stemming produced similar performance with an average F1
score of 0.945 compared with 0.953 when all features were
used. These results suggest that stemming is a useful feature-
selection technique for identifying HIT incidents in MAUDE.

Training classifiers with balanced datasets
We discovered that classifiers trained and tested with balanced
datasets (0.994) marginally outperformed the classifiers trained
and tested with 10% (0.945) and 100% (0.953) of the original
dataset. These results are in accordance with studies that have
shown that training classifiers on imbalanced data can degrade
performance.21 22 In addition, we experimented with training
classifiers on balanced datasets but to validate and test on the
stratified datasets. Our results show that classifiers trained, vali-
dated, and tested on balanced datasets (0.953 F1 score) overesti-
mate classification performance compared with testing them on
real-world stratified data (0.274–0.283 F1 scores).

Identifying rare HIT incidents
An undersampling approach was adopted by using balanced
training datasets to improve the performance of classifying rare
HIT incidents (0.297%) in MAUDE. We observed that this
approach increases recall but significantly degrades precision
and F1 score. For example, recall (0.929–0.989) is improved
compared with the original stratified dataset (0.916–0.943).
However, it could be argued that more weighting should be
applied to recall than precision for calculating the F-score in a

real-world context. For example, healthcare professionals will
likely undertake detailed analysis of the identified HIT in order
to learn and address problems. Therefore, it may be more
important to identify potential HIT incidents even if many
non-HIT incidents are incorrectly flagged (false positives) since
they can be quickly discarded. In addition, other useful techni-
ques such as ensemble methods for improving the rare class
detection were not evaluated in this study and could be tested in
future work.

Cost of classifying HIT incidents
The learning curve of the best performing classifier on the full
dataset is displayed in figure 2. This curve illustrates that classifi-
cation error may continue to decline if more incidents (ie,
300 000+) can be used for training or through incorporation of
other types of text classification features. However, there are
costs involved in acquiring human expertise to review and label
potential HIT incidents retrieved from the initial keyword
searches used in our previous work.11 The learning curve indi-
cates that convergence is not achieved, so we are unable to
determine how many incidents need to be labeled to achieve
stable performance. Additional costs incurred involve perform-
ing time-consuming but useful error analyses of classification
results.

Big data
The number of incidents in MAUDE and other incident-
monitoring systems is growing. For example, the subset of
MAUDE used in this experiment contained 515 897 incidents,
with 85 560 generated features that are represented as a matrix
with approximately 44.1 billion elements. Therefore, we
selected computationally efficient classification techniques and
algorithms in this study that can scale to large datasets.
Improving efficiency affords many opportunities, including the
use of richer features such as semantic role labels in large-scale
experiments and performing near-real-time classification of HIT
incidents in MAUDE. However, there are other techniques not
used in this study that can be evaluated in future work. For
example, applying mini-batch gradient descent with a distribu-
ted and parallelized framework such as MapReduce33 can
reduce training time in addition to applying efficient feature-
reduction techniques such as feature hashing.34

Limitations
We exclusively evaluated LR classifiers to identify rare HIT inci-
dents using different combinations of balanced and stratified
datasets and feature-selection techniques. The HIT incidents we
used were voluntarily reported by vendors and users to
MAUDE. We used incidents ranging from 1 January 2008 to
1 July 2010 and not the complete dataset starting from 1991.
Therefore, it is unlikely that our dataset is representative of all
types of HIT incidents reported to MAUDE and other incident-
monitoring databases. It is likely that there are more HIT inci-
dents that have not yet been discovered by our labeling. The
labeling of training data is critical in developing an effective
classifier. This study clearly shows how problems with the train-
ing data in the preliminary experiments can impair the develop-
ment of an effective classifier. The original 405 HIT incidents
were labeled in our previous work, using keyword search and
then manual reviews. This may have introduced a selection bias
and the classifiers are likely to overfit the data by identifying
these keywords as the most effective features, which may not
reveal the true difficulty of the problem. This was evident in the
relabeled data experiments where handheld-related incidents
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were relabeled as HIT, and the token with the highest coefficient
from our new classifiers was ‘handhelds’. Unfortunately, there is
no other practical method of identifying HIT incidents from
such large datasets without manual inspection of every incident,
which is not feasible. In addition, there may be bias toward
improved results because of the repeated use of the same
dataset. Although we took great care to randomly select multiple
training, validation, and test subsets, the fact that they were
repeatedly sampled from the same dataset may have resulted in
an overstatement of the classification performance. If the best
classifier from this study were tested on new incident reports, its
performance may be lower.

CONCLUSION
Statistical text classification is a feasible approach for automatic-
ally identifying HIT incidents from large collections of inci-
dents. The use of automated methods can reduce the time for
HIT problems to be identified and therefore analyzed and
addressed by healthcare professionals. Semi-supervised learning
may be necessary to apply machine learning techniques to big
data analysis of medical incidents.
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